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Equations of motion correct to the first order of the gas concentration by volume 
are derived for a dispersion of gas bubbles in liquid through systematic averaging 
of the equations on the microlevel. First, by ensemble averaging, an expression for 
the average stress tensor is obtained, which is non-isotropic although the local stress 
tensors in the constituent phases are isotropic (viscosity is neglected). Next, by 
applying the same technique, the momentum-flux tensor of the entire mixture is 
obtained. An equation expressing the fact that  the average force on a massless bubble 
is zero leads to a third relation. Complemented with mass-conservation equations for 
liquid and gas, these equations appear to constitute a completely hyperbolic system, 
unlike the systems with complex characteristics found previously. The characteristic 
speeds are calculated and shown to be related to the propagation speeds of acoustic 
waves and concentration waves. 

1. Introduction 
Mixtures of liquid and small gas bubbles occur in many industrial processes (bubble 

columns and centrifuges in the petrochemical industry, cloud cavitation in hydraulic 
systems, cooling devices of nuclear-reactor systems) and in nature (air entrained in 
the form of bubbles in brooks, rivers and a t  the surface of the ocean). A lot of attention 
has been paid to the problem of how to formulate equations of motion for such 
two-phase flows. In  the case of negligible velocity differences between the phases, the 
equations for one-dimensional transient flow of bubbly liquids are reasonably well 
established (see e.g. van Wijngaarden 1968, 1972). Solutions for the propagation of 
acoustic disturbances, shock waves and solitons have been verified experimentally 
(e.g. Kuznetsov et al. 1976). More general equations for dispersed two-phase flows in 
which allowance is made for velocity differences between the phases have been 
formulated first in a heuristic way, but later by applying averaging techniques like 
time averaging (Ishii 1975), volume averaging (Nigmatulin 1979) and ensemble 
averaging (Buyevich & Shchelchkova 1978) to the conservation equations of the 
separate phases. 

I n  $2 the equations resulting from volume averaging are briefly discussed, together 
with some conclusions that can be drawn from them. An important conclusion is that 
the equations, in their simplest form, have complex characteristics, which renders 
the initial-value problem ill-posed. The attempt to obtain improved equations by a 
more accurate description of interaction forces and other interaction effects between 
the phases is as yet hampered by a lack of knowledge concerning quantitative 
description of these effects. I n  $53-6 we bypass this problem by formulating, instead 
of the momentum equations of the two phases separately, one averaged momentum 
equation for the entire mixture. An additional equation is then needed, and this is 
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obtained by averaging the hydrodynamic force exerted on the bubbles by the 
surrounding fluid and using the fact that  on the approximately massless bubbles the 
net force must vanish. Similar approaches have been applied by other authors (e.g. 
Voinov & Petrov 1977; Nigmatulin 1979), but, instead of averaging a relation for the 
force on the bubbles, they used an expression for the force on a spherical body moving 
in an unsteady, non-uniform flow field. It turns out, as is shown in $7, that  after 
averaging a relation results that  differs from those used in previous works. 

The novel aspects in our work are the systematic averaging of the equations and 
the fact that upon inspection of the characteristics these appear to be real. I n  general, 
four characteristics are found (see $10). Two of these are associated with acoustic 
wave velocities. The remaining ones, complex in other theories, are associated with 
the propagation velocity of perturbations in the void fraction. These kind of waves 
are discussed in $9 in relation with the present theory. 

2. Review of previous work 
A way to formulate equations of motion for a mixture of two phases is to average 

the conservation equations for each of the phases over the volume occupied by the 
pertinent phase in a suitably chosen averaging volume. In  the averaging process, 
fluctuations disappear and equations for average or mean quantities are obtained. 
This method, which has its specific difficulties and pitfalls because of the problem 
of dealing correctly with discontinuities at the boundaries between the two phases, 
has been applied, for example by Nigmatulin (1979), in the following way. 

Let us denote the local density by p,  velocity by U, stress by u and volume 
concentration of phase k by a,. Averaging over the volume occupied by phase k is 
indicated with an overbar and the subscript k (e.g. uk). The equations for conservation 
of mass and momentum for phase k, in the absence of mass transfer between the 
phases and excluding gravity and other external forces, are as follows : 

The integrals over the interfaces A ,  inside the averaging volume Ti represent the 
interaction forces between the phases. The normals n, are directed outward with 
respect to phase k. 

It is common practice to write the momentum-flux tensors as 

( ( P 4  4, = (PI, 4 + ((PU)’ U ’ h ,  (2.2) 

where the primes denote fluctuations about the averages. The fluctuation terms can, 
as in the theory of turbulence (Reynolds stresses), conveniently be combined with 
the average actual stress tensors. When density variations within a single phase are 
discarded, the conservation equations become 

(2.3) 

a 
Gakpk+V.ak Pku, = 0, 

a 1 
ak P k  [ ~ u k  + ak’vu,] = v.ol,[s,- ( (  PU)’ d ) k ]  + 7 jA,  U’nk dA. 
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For further progress, specification of the stresses and the interaction forces is 
required. The interaction forces may include viscous forces, inertia or virtual mass 
forces, and surface tension. Usually one employs general forms of constitutive 
equations together with suitably chosen coefficients based on experimental results 
(see e.g. Drew & Lahey 1979) ; however the correct formulation of these terms is still 
a subject of discussion in the two-phase-flow literature. 

The simplest set of equations is obtained when the Reynolds stresses, viscous and 
other interaction terms, except for an isotropic pressure term, are omitted, and the 
averaged pressures of' the phases are assumed to be equal. For one-dimensional flow 
of gas (subscript g) and liquid (subscript e), the equations are in that case 

a a 
-apg+-apg up = 0,  
at ax 

a a 
- (1 -01) pc + - (1 -a)  p, u, = 0 ,  
at ax 

( l -a)pt(T+uc-  +(I-a) -=O.  aP sue) ax ax 
Here Ug and U, are the averaged gas and liquid velocities, p is the averaged pressure 
and a is the volumetric fraction of the gas phase, or void fraction. 

This set of equations has been discussed by many authors (van Wijngaarden 1976a; 
Stuhmiller 1977). A disturbing feature is that  the set has two real and two complex 
characteristics, and is therefore not completely hyperbolic, which means that the 
initial-value problem is ill-posed. Any correct numerical scheme for solving such a 
set of equations will therefore develop instabilities. On the other hand, there is 
experimental evidence (see $9) that in a dilute mixture of liquid and gas bubbles stable 
wavelike disturbances are possible. There have been numerous attempts to overcome 
this difficulty by introducing additional terms. Although much work has been done, 
it has as yet not been possible to  derive a set of equations with real characteristics 
from first principles. 

As mentioned earlier in this paper, the formulation of the phase-interaction forces 
can be bypassed if we do not try to find momentum equations for the separate phases 
but average the local momentum equations over the entire mixture. Such an 
approach is also used in the theory of suspensions of particles in viscous liquids by 
Batchelor and associates (Batchelor 1970, 1974; Batchelor & Green 1972), and in the 
next sections we will apply a technique similar to that used by Batchelor (1970) to 
a mixture of liquid and small spherical gas bubbles. 

3. The bulk stress tensor 
We consider unsteady and spatially inhomogeneous flow of gas bubbles in a slightly 

viscous incompressible liquid. As a result of external forces, e.g. gravity, the bubbles 
move with respect to the liquid. We assume that the Reynolds number for the relative 
translational motion of a single bubble with respect to the bulk motion is large. At 
the same time, surface tension is supposed to be large enough to keep the bubbles 
approximately spherical. 

We want to formulate for this dispersion equations of motion on a continuum basis, 
and with a view to that we make a distinction between three lengthscales. 
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(i) The microscale. For this the mean particle distance, proportional to n-4, where 
n is the number density, is a useful quantity. 

(ii) The macroscale, L say. This is the distance over which mean quantities like Vg 
or U, vary significantly. The precise definition of 'mean' is given later. For example 
L can be the length of a wave progressing through the mixture. I n  the following we 
want to derive equations describing relations between Up, U, etc. and their spatial 
derivatives. Fluctuations on the microscale are taken into account only insofar as 
they produce effects on the macroscale. I n  order to accomplish this we introduce 

(iii) the mesoscale, 1 say, which is small with respect to L but large with respect 
to n-!. The scales are schematically indicated in figure 1. 

If we consider an element of the mixture on the mesoscale, and the motion of the 
bubbles in it,  the simplest description of the motion of an individual bubble is that 
of a bubble in translational motion relative to  the surrounding liquid. Therefore, 
before embarking on the averaging procedure, we pause to discuss uniform flow 
around a gas bubble. 

With a relative velocity in water of 20 cm/s the Reynolds number for such a flow 
is 400 for a bubble with a radius of 1 mm. At a Reynolds number of this magnitude, 
inertia forces dominate over viscous forces, and when the liquid is free of surface-aotive 
agents the flow is amenable to calculation. The results of Moore (1963) and, more 
recently, of Pham (1982) give the following picture of the flow around a spherical gas 
bubble a t  moderate Reynolds numbers. The main part of the velocity and pressure 
distribution is that  associated with the potential flow around the bubble. This satisfies 
the condition of no relative motion in the direction of the normal to the surface, but 
not the condition of vanishing tangential stress.? This is reduced from its value in 
the potential flow to zero in a boundary layer with a thickness of order He-:, where 
Re is the Reynolds number based on the free-stream velocity. This Reynolds number 
is supposed here to be large enough to make the associated velocity perturbation, 
which is of order Re-:, negligibly small. The concept of a boundary layer cannot be 
continued till the rear stagnation point. It can be shown, however, that also a t  the 
rear the deviation of velocities and pressures from those of the primary potential flow 
vanish at high Reynolds numbers. Accordingly they will be disregarded in the 
calculation of the bulk stress tensor. 

Regarding the role of viscosity, two more remarks should be made. The first 
concerns the wake behind the bubble. I ts  width is of order Re-: (Moore 1963), and 
the associated velocity perturbation is of order Re-:. Since we suppose Re to be large, 
we will neglect the velocity perturbation due to the wake just as we neglect that of 
the boundary layer. There is an important difference here with the flow around a gas 
bubble in an impure liquid, where a no-slip condition applies a t  the interface. In  that 
case there is a t  high Reynolds numbers a wake of finite width and a velocity 
perturbation of order one a t  the rear of the bubble.$ At the present state of knowledge 
about the flow around rigid bodies a t  high Reynolds numbers it is not possible to 
predict this velocity perturbation. We will therefore restrict ourselves to  the case of 
pure liquids, admitting that a similar theory for contaminated liquids would be highly 
desirable since these occur frequently in practice. 

A second remark concerns the frictional force on the bubble. Although the pressure 
correction with respect to the potential flow cannot be calculated near the rear 

1- This would be the exact boundary condition for an empty bubble, but may also serve as 
boundary condition for a gas bubble in view of the small viscosity with respect to that of water. 

In a mixture the significance of wakes is probably less than in a free stream because the presence 
of neighbouring bodies suppresses the wake considerably. 
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FIGURE 1.  Lengthscales in bubbly liquid: (a) macroscale L ;  (b) microscale n d  and mesoscale 8. 

stagnation point, an expression for the viscous resistance force can be obtained from 
a calculation of the viscous dissipation in the fluid outside the boundary layer as first 
shown by Levich (see Batchelor 1967, p. 367), or from momentum considerations 
(Moore 1963). I n  $9 we will use the result for the viscous drag D = lZrcpRAu, where 
,u is the viscosity of the liquid and Au the velocity difference between the free stream 
and the bubble. 

After this excursion to  the flow around a single bubble, we return to the bubbly 
flow with the various scales as depicted in figure 1. We consider a volume V with a 
linear dimension of the order of the mesoscale 1. This volume is centred about the 
macroscopic vector position x and contains a large number N of gas bubbles, with 
equal radius R ( x , t ) .  The relation between n, V and N is therefore n = N / V .  Since 
the same macroscopic conditions can correspond to many different realizations of the 
positions of N bubbles inside V ,  and since a large number of realizations of sphere 
positions constitute an ensemble, it is appropriate to define the average value of a 
quantity as the integral of the local value of that quantity over the ensemble of all 
possible configurations of the N bubbles in V .  Let the probability of finding a certain 
configuration C, of N bubbles in V be P(G,)dC,. We now define the ensemble- 
averaged stress tensor (a) by 

where x may be in one realization in liquid and in another realization in gas. 
I n  our continuum approach mean quantities defined in this way, and depending 

on x and t ,  are constant on the mesoscale, which, as we have assumed, is small 
compared with the macroscale. On the other hand there are a large number of 
particles, in our case bubbles, in V ,  because the mesoscale 1 is large compared with 
the interparticle distance. There is already a rich literature on the calculation of 
average quantities, defined as above, for the case in which the flow around individual 
particles is dominated by viscous forces, as for example in the sedimentation of small 
particles in liquid under gravity. The theory of viscous suspensions has been reviewed, 
for example, by Batchelor (1974). In  order to make an optimal use of the results 
obtained by Batchelor in a series of papers beginning with Batchelor (1970), we will 
follow his approach, which employs ensemble averaging but uses a t  certain stages 
the equivalence with volume averaging which holds for a statistically homogeneous 
medium. However, a formulation either completely in terms of volume averaging or 
of ensemble averaging is possible, in principle. We will henceforth denote both types 
of averaging, when used, by ( ). 

Making use now of the equivalence with volume averaging, we write (3.1) as a 
volume average, following Batchelor (1970). We divide the volume 1/ into three parts: 
(i) the volume V, occupied by gas; (ii) a vanishingly small volume E V, containing the 
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FIGURE 2. Bubble with volume V,, which includes an interfacial layer with thickness B and 
volume V,, bounded by the surfaces A: and A;.  

interfacial layers between gas and liquid; and (iii) the remainder of V ,  wholly occupied 
by liquid. If we indicate the sum V,+C V, by V,, the volume of (iii) is V-XV,. This 
partition is shown schematically in figure 2. 

With this specification of the volumes involved, 

Recalling that we have denoted the mean number density by 

we write (3.3) 

where the integration is over the volume of a test sphere or reference sphere. The 
value of this integral will in general depend on the position of other spheres, and the 
average in (3.3) is an ensemble average over the possible realizations of sphere centres 
in V. This interpretation is particularly helpful in examining the effects of 
hydrodynamic interaction, as is excellently demonstrated for the case of a viscous 
suspension by Batchelor & Green (1972). 

In  order to evaluate the integral in (3.3), we introduce the position vector r of a 
point with respect to the centre x of the test sphere. Transformation of the volume 
integral on the right-hand side of (3.3) into a surface integral gives 

The surface A, lies completely in liquid (i.e. outside the interfacial layer), and, with 
pressure p in the liquid, 

aik rj  nk dA = - pSik rj  nk dA = - p r j  ni dA,  (3.5) 

where St, is the Kronecker delta. A hydrostatic head is not included in p .  Gravity 
will be introduced in $6, where the momentum equation is formulated. 

With regard to the second integral on the right-hand side of (3.4), the divergence 
of the stress, as shown by Batchelor (197O), is regular in V, (although the stress itself 

j A  B S, B S, B 
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may be large in the interfacial layer), and when we neglect the 
or vapour within tho bubbles this integral vanishes. Hence, from 

The volume C--EV, is occupied by liquid, and the first integral 
side of (3.2) may be written as 

307 

inertia of the gas 
(3.3)-( 3.5), 

(3.6) 

on the right-hand 

aij dV = ( 1  -a) (vij)/ =z - (1  -a)  ( p ) e  Sij. (3.7) 1s V I J - X V ~  

Thus the bulk stress (3.1) is the sum of the right-hand sides of (3.6) and (3 .7 ) ,  i.e. 

(aij> = - ( 1 - a) (p )e  Sij - n (S,, p r j  ?bi dA ) . (3.8) 

The pressure p in the integral in (3.8) results from the motion of the test sphere itself 
and from the motion of the other spheres in the volume V .  Its determination requires 
solution of Laplace’s equation with appropriate boundary conditions on all spheres. 
This is impossible to achieve, but for dilute mixtures one can in a first approximation 
consider the test bubble to be isolated in an infinite liquid. The probability that if 
there is a bubble at x + r  there is another one located at a distance of the order of 
the radius R, is proportional to  a, so that interactions with one other bubble are 
involved in the calculation of (v i j )  in the next approximation. I n  the first 
approximation to which we restrict ourselves here, the integral in (3.8) has the same 
value for each realization, and we have only to calculate its value in the case of a 
uniform flow along the test sphere. Far from the test sphere, moving a t  velocity U,, 
the liquid velocity and pressure are uniform, with values 

respectively. 
The test bubble is always spherical. However, its radius may change, and the rate 

of change of the radius is denoted by d R / d t .  Mass conservation for any bubble, 
together with (2.4) and (3.9), gives 

i-4 = U o ( x , t ) ,  p = ( p ( x , t ) )  (3.9) 

V’ Uo = 2 (fnB3). 
dt 

The hydrodynamic potential $ is, with x and r as shown in figure 3, 

dR 
R2- 

dt 
(3.10) 

1 
r r 

3 3 ( U O ( X ,  t ) -  U,(x,t)f-V,-. #(x+ r ,  t )  = U J x ,  t )*r - - - -  

The pressure p ( x  + r .  t )  follows from Bernoulli’s theorem, and is, with Pe denoting the 
density of the liquid, 

(3.11) 

where the time derivative a$/at is a t  constant r .  From (3.10) and (3.11) we find 
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FIGURE 3. Reference sphere at x with radius R(t), moving with velocity U, 
in an unbounded fluid with velocity U,, a,t infinity. 

Combining (3.8) and (3.12) gives for the bulk stress 

+Pt~[&{JU,- UoO2/-%(Ug- U,) w,- UJI, (3.13) 

where / denotes the second-order unit tensor. 
By definition, the bulk pressure ( p )  is related to (gij) by 

( P )  = - S ( g i i > ,  

which allows us to write (3.13), accurate to  O(a) ,  as 

( 0 )  = -(P>/+Pe"[&{lUg--U,1}2/-~(Ug- U, , (Ug-  Udl. (3.14) 

Furthermore, from (3.13) and (3.14), i t  follows that tthe pressure averaged over the 
liquid is related to the bulk pressure by 

(3.15) 

The result (3.14) is particularly interesting. It appears that, although the local stress 
tensor in each of the phases is isotropic, the average stress tensor contains, owing 
to the relative velocity of the phases, a non-isotropic part. F,rom (3.15) we see that 
the contribution ( p )  - ( p ) (  of the bubbles to the bulk pressure consists of a part that 
stems from relative translational motion and a part that  is due to the volume changes 
of the bubbles. 

4. The phase-averaged pressures 
In  $3  the bulk stress has been obtained by averaging over the entire dispersion. 

Sometimes i t  is convenient to take averages over the separate phases. The relation 
between the bulk pressure ( p )  and the average pressure ( p ) [  in the liquid is given 
by (3.15). To obtain the relation between the average gas pressure ( p ) ,  and ( p )  we 
have to  make a partition different from (3.1). V, consists of a volume V, in which 
the interface is included and a volume V,- V, completely occupied by gas. At the 
fluid side V, is bounded by a closed surface A:, and a t  the gas side by a surface A;. 
As in (3.4) we write 
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We take e+O and, again, since the divergence of the stress is regular inside V,, even 
if in the interface a surface stress is present, we obtain (for a detailed account see 
the appendix in Batchelor 1970) 

lim J vijdV = J yrjniV.n,dA, (4.2) 
€+O v, Ar 

where y is the coefficient of surface tension and yni V*n, is the jump in normal stress 
across the interface due to surface tension. The latter consists of an average, 2y/R, 
and a varying part [PI, due to (slight) departures of the spherical form as a 
consequence of the motion of the bubbles: 

(4.3) 

Inside the bubbles the pressure is, owing to the small gas density, uniform and equal 
to p ,  = ( p ) , .  At the outside of the interface the pressure is equal to the liquid 
pressure. The integral in (4.3) is therefore due to deviations of the local liquid pressure 
from the average pressure over this surface : 

,- c 

The bulk stress tensor is now written as 

(v i j )  = (1 -a) (gi j ) [  + a(vij) ,  + lirn n ( Jvc aij d V )  
B’O 

Using (3.11) and (4.2)-(4.4), we finally obtain 

+crpeMlU,- Uol}2/-&(Ug- Uo) (U,- UO)]. (4.5) 
Comparison with (3.14) shows that 

2Y <P> = (1 -a) < P ) 6 + a < P ) g - p >  

or, with the help of (3.15), 

5. The momentum-flux tensor, including Reynolds stresses 
The momentum of the mixture is entirely due to  the liquid, because the contribution 

of the gas may reasonably be neglected. We therefore write the average momentum 
flux as 

M = &  J uudV, 

where V, has the same meaning as in the previous sections. We divide the local 
velocity into the average velocity Uo and a fluctuating part u’. Inserting this in the 
above expression i t  follows that 

V-ZvB 

M = p l ( l  -a) Uo Uo+pe(l  -a) [Uo( U,- Uo)+ (U,-  U,) U O ] + e  u’u’dV. 
V-ZVB 

(5.1) 
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This expression has been considered in van Wijngaarden (1976b) for the case of rigid 
spheres. A calculation allowing for volume changes of the bubbles starts with the 
calculation of u‘ from the potential (3.10) : 

dR 
R2- 

dt (U,-U,)R3 3 (Ug-U,)R3-r  +- 2 r5 r. (5.2) u’(x+r, t )  = V,$- U, = - r- 
r3 2r3 

Again, as in the previous sections, we assume that the suspension is so dilute that 
interactions are negligible and within that approximation (which is accurate in the 
first order of the void fraction a)  it  is legitimate to  insert (5.2) in (5.1) and to  integrate 
over all space outside the bubble : 

U’u‘dV = n u’u’ dr + O ( a 2 ) .  ‘1 ’ V-ZVB r > R W  

Making use of (5.2) and carrying out the integration gives 

Compared with van Wijngaarden (19763) there is an additional term here, (dR/dt)2/, 
due to the rate of change of bubble volume. 

Since we are dealing with the liquid, the gas carrying negligible momentum, i t  is 
useful to express (5.1) in terms of U, and U,, rather than U, and U,. The relation 
between them is 

u, = (1-a) u,+aug. (5.4) 

Inserting (5.3) into (5.1) and making use of (5.4), we obtain 

M dR 
- P l  = (1 -a)  u, u,+a [(z) +&W,- W ] ~ + k a ( U , -  u,, (U,- U,). 

From (2.3) and (5.5) the Reynolds stresses in the liquid can be obtained. The result 
is 

dR 

6. The momentum equation for the dispersion 
I n  the foregoing sections we have obtained an expression, (3.14), for the average 

stress tensor in the dispersion as well as an expression, (5.5), for the momentum flux. 
The equation of motion is obtained by equating the rate of change of momentum 
to the sum of the divergence of the stress tensor and external forces. Such external 
forces are permitted that are constant on the mesoscale. Gravity is such a force, and, 
by using (3.14) and (5.5), we obtain 

a 
-p,(l-a) U,+V.p,(l-a) u, v, 
at 

dR 
= --V(P)+P,(l -a)g-v.P,a[(;i;-) , + w g -  u,, tug- u,)]+O(a”), (6.1) 

where g denotes the acceleration due to  gravity. The terms on the left-hand side are 
the well-known local and convective acceleration terms pertaining to the average 
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liquid velocity. On the right-hand side we have first the gradient of the bulk pressure, 
then gravity, and finally an expression which is completely due to the relative motion. 

It is appropriate to compare (6.1) with results obtained by others. A momentum 
equation for a mixture without relative translational motion was given in van 
Wijngaarden (1968). No specific averaging technique was used. The purpose was to 
bring out the dispersion of acoustic waves. In that connection (4.7) plays an 
important part, in which for small dR/dt and in the absence of relative translational 
motion and surface tension only the term p, Rd2R/dt2 survives. If we take 
Ug- U, = 0 then there is still with respect to usual presentations the term 
V - p ,  a(dR/dt)21. 

As mentioned in $§ 1 and 2, averaged equations like (2.1) have been given by various 
writers on the subject. One can distinguish between investigations like those by Ishii 
(1975) or Buyevich & Shchelchkova (1978), where only formal equations are given, 
and studies in which the averaging is actually carried out. An example of the first 
category is the book by Ishii (1975). A formal expression is given there for the so-called 
mixture volumetric momentum source Mm, which can be obtained by addition of 
the two interaction terms in the momentum equations in (2.1) of the present paper: 

ME is a force arising from deviations of the bubble shape from the spherical form, 
due to bubble motion. Comparing this with our result (4.5), we would obtain for M M  

There are only a few studies known to the present authors in which the averaging 
is actually carried out. They are mostly published by Russian investigators and 
almost all of them (e.g. Nigmatulin 1979) use so-called cell models in dealing with 
the interactions. I n  these models the suspension is divided up into cells. I n  the centre 
o f a  cell is a test particle, and the flow relative to the test particle is calculated under 
certain assumptions about the prevailing boundary conditions along the walls of the 
cell. The difficulty with cell models is that  their accuracy is not known. It is therefore 
difficult to assess the validity of the results. Since, apart from this, the derivations 
mentioned above contain numerous additional assumptions, we cannot give a more 
or less precise evaluation of how differences between momentum equations in these 
works and our momentum equation (6.1) are produced. We can only report that  the 
term (dR/dt)2/ does not occur in these studies and that the non-deviatoric part 
associated with Up- U, does occur, albeit in a different form. Voinov & Petrov (1977), 
for example, find (they do not use a cell model) as momentum equations, neglecting 
as we did the contribution of gas to the momentum, 

a) U,+V*p,(l--a) u, u, 

7. On the relative motion between the phases 
The momentum equation (6.1) together with mass-conservation equations has to 

be supplemented with additional relations to  complete the set of equations. For most 
purposes the liquid can be considered as incompressible and isothermal. For the gas 
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phase an energy equation has to be formulated which, in the simple case of isothermal 
behaviour, and excluding coalescence or breakup of bubbles, can be put in the form 

pg ~3 = constant, = constant. (7.1) 
P P  

Inserting this in (4.7) makes this relation in fact an equation that relates the average 
bubble radius to the bulk pressure and the relative velocity Ug-  U,. 

The mass-conservation equations like (2.4) and (2.5) are accompanied in the 
present theory by one momentum equation, (6.1). Since this is not sufficient, we have 
to look at the equation of motion of one of the two phases separately. We choose 
for this the gas phase. As we shall see, the difficulties associated with complex 
characteristics are associated with erroneous equations for the gas phase. At the 
present stage of approximation, in which the inertia of the gas is negligible, we have 
to assume that the average force on bubbles is zero, 

n ( F )  = 0. (7.2) 

The averaging is, as before, over all realizations of N bubbles in a volume V .  The 
volume V is centred around the location x in the suspension. For the suspension to 
be statistically homogeneous, i t  is required that averaged quantities are constant in V .  
Such quantities are U,(x, t ) ,  Ug(x,  t )  and U,(x, t ) .  The averaging concerns quantities 
that vary rapidly as a result of the motion of a test bubble (particle) or of interaction 
between bubbles. Such interactions are neglected in the present approximation, and 
we can envisage a bubble moving with velocity V,(X, t )  through a liquid which has 
far from the bubble the velocity U,(x, t ) .  This is the situation envisaged in figure 3 
and described by the potential q5 in (3.10). Averaging is over the variable r ,  and all 
quantities that  are constant on the scale of r remain constant in the averaging process. 

The motion of a closed body through uniform flow of a perfect liquid is a classic 
subject in fluid mechanics, for which the fluid impulse (Batchelor 1967, p. 408) is a 
useful concept. The impulse is the product of the virtual mass, m say, and the relative 
velocity, here Ug-  U,. For a sphere with volume 7 the virtual mass is ipe7  in an 
infinite medium. For a massless sphere the time rate of change of the impulse equals 
the external force. I n  our case this is the pressure force on the bubble due to the time 
rate of change of the liquid velocity, pe7aUO/at. Thus the average momenturn 
equation for the gas phase is 

(7.3) 

We can make this relation more realistic by the addition of effects of viscosity and 
gravity. As mentioned in $3, the drag on the bubble can be found from calculation 
of the dissipation. The result is, in the case of a uniform relative velocity U, 

D = 12n,uRU, 

where ,u is the viscosity of the liquid. Including this viscous drag and a buoyancy 
force, the relation (7 .3)  becomes 

Within the present approximation, (7.4) is the correct momentum equation of the 
gas. If an expression is required that is valid for larger values of the concentration 
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a,  interactions between bubbles have to be taken into account. For instance in an 
approximation correct to O ( a 2 ) ,  interactions between two bubbles have to be 
considered. This means that for the added mass in an expression like 

m = +p7( 1 + ba)  ( 7 . 5 )  

the coefficient b has to be determined. This has been done, with the use of Batchelor's 
renormalization technique (see e.g. Batchelor 1974) to avoid divergence difficulties, 
in van Wijngaarden (19766) .  We take this opportunity to report that the value 
b = 2.78, as reported there, is incorrect owing to a computational error, and should 
be b = 3.32.  A similar calculation of the frictional force as a function of a is the subject 
of current work by us. 

Since much has been written on the subject of the correct form which the equation 
of motion for the gas should take (see e.g. van Wijngaarden 1976a) ,  it seems 
appropriate to devote some discussion to it. The discussion in the literature has been 
centred around the question of how the classical expression for the motion of a bubble 
in a uniformly accelerated fluid could be extended to spatially nonuniform flow. 
Various forms have been proposed in which material derivatives with respect to the 
liquid as well as with respect to the gas occur. A discussion on the correct form of 
the pertinent equation for non-uniform flow is outside the scope of the present paper. 
Of importance in the context of this investigation is to note that, in fact, such an 
equation is not needed here, because, in the averaging procedure, average quantities 
are constant in the averaging volume and only time derivatives are needed, as shown 
by ( 7 . 3 ) .  

8. Equations of motion for one-dimensional vertical flow 
In  this section we summarize the equations derived in the previous sections for 

one-dimensional transient motion. In front of the equations the pertinent number 
is indicated, as it appears in the foregoing sections. Gravity is pointing in the negative 
x-direction. 

a a 
- ( l - a ) + - U t ( l - a )  = 0, 
at ax 

(5.4) (1-a)  v,+au, = uo, (8.5) 

( 7 . 1 )  pg R3 = constant, % = constant, (8.6) 
PP 
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1 d2R 
(4.7) <p>, = pg = <p)+-++p, - - +R---:(U,- Uo)2 . 2y R [i(zy dt2 

It should be recalled that these equations are correct in the first-order terms in a. 

9. Acoustic waves and concentration waves 
Before inspecting the characteristics of the system (8.1)-(8.8), i t  is useful to discuss 

two types of waves that can propagate through a bubbly flow and which are related 
to the concept of characteristics. We recall that according to the theory of partial 
differential equations of hyperbolic type, discontinuities travel with the characteristic 
speed. 

One such discontinuity is a sound wave. Acoustic waves in bubbly flows have been 
extensively studied. The speed of sound cf in a quiescent mixture is given by 

The way in which acoustic waves are affected by relative translational motion, 
relative radial motion, viscosity and other effects is rather well established, and we 
may refer here to reviews as for example in Lauterborn (1980). For further reference 
we note here only that, for the case in which viscosity is so large that in the sound 
wave the bubbles move with the liquid, the sound velocity is slightly lower than in 
(9.1) and given by 

Another type of wave is related to kinematic waves or continuity waves. These 
are waves in which disturbances in the void fraction a propagate through the bubbly 
flow, thereby causing disturbances in the velocities of fluid and gas but leaving the 
pressure essentially unchanged. For traffic waves (Whitham 1974), which form the 
classical example of kinematic waves, there exists an empirical relation between 
traffic velocity (comparable to U g )  and traffic density (comparable to a). Here the 
likeness between traffic waves and our type of waves ceases, because here the relations 
that we need to express U, in a, (8.4) for example, contain inertia terms. Only such 
waves are kinematic waves, properly speaking, in which inertia does not take part. 
We shall, because of this difference, term our waves concentration waves. 

Concentration waves of small and of finite amplitude have been observed and 
studied under laboratory conditions as reported in Bernier (1981) and in BourB & 
Mercadier (1982). Equations that are supposed to describe their behaviour should 
therefore possess real characteristics. Complex Characteristics lead to instability, and 
stable waves like those observed could not exist. That is why one must stipulate 
real characteristics. It will turn out in 4 10 that the system of equations summarized 
in 8 8 has real characteristics, whereas in the literature complex characteristics have 
been found, notably because of a different form of (8.5).t 

Properties of concentration waves in our theory are easily obtained under 

t One exception is the relation chosen in Prosperetti & van Wijngaarden (1976) in which the 
time derivatives in (8.4) are taken as material derivatives associated with the bubbles. In retro- 
spect, this is not correct. 
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simplified conditions. Upon neglecting compressibility, the mass-conservation 
equation (8.1) for the gas phase is reduced to 

aa aa u 
at ,ax: ax -+ u - + a 3  = 0. (9.3) 

If we leave out the viscous term in (8.4) for convenience and also leave out gravity, 
we have from (8.4) 

Note that, at constant p,, addition of (8.1) and (8.2) shows together with (8 .5)  that  
Uo depends on time only. Inserting (9.4) in (9.3) gives directly 

(9.4) u, = 3U,(t). 

aa aa 
at p a x  
-+ U - = 0. (9.5) 

This shows that under the above conditions concentration waves travel a t  the velocity 
of the gas. 

The same result is obtained when we consider bubbles rising in a vertical pipe, 
buoyancy being balanced by viscous drag : 

$ K P e  R3g = 1 2 x , ~ R (  U, - U,). (9.6) 

Here too CJ, depends only on U,,, and (9.5) follows again. 
The observations by Bernier (1981) and Bour6 & Mercadier (1982) show that the 

speed of propagation of concentration waves depends on a, whereas in the above 
examples they travel at U,. The reason for this discrepancy is that  we have neglected 
interactions between the bubbles. To obtain quantitative effects of a on the speed 
of propagation of concentration waves we shall have to incorporate interactions. This 
can be illustrated with the traffic waves. When drivers (cars may be compared to 
bubbles) are not aware of the presence of other cars, and the external conditions along 
the road do not change, all drivers will move with a speed compatible with these 
external conditions. Only when the drivers let themselves be influenced by the 
presence of others will they adapt their speed to the traffic density, and then traffic 
waves with a speed depending on density may occur. 

10. Characteristic velocities 
After this discussion of acoustic waves and eoncentration waves we finally turn our 

attention to the characteristics of the system (8.1)-(8.8). In  order to leave out 
frequency dispersion we take ( p )  = ( p ) ,  = p .  For small dispersion and small 
viscosity the equations of motion can be reconciled with the concept of characteristics 
as in single-phase gascs, as described in Lighthill (1956) or Whitham (1974). We obtain 
from (8.1)-(8.8) 

a a 
at ax - ( l -a)+-( l -a)  I J , = O ,  
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The characteristic roots are found by inserting 
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a a 
ax 

- at = -A-  

in these equations and solving for A. One root is A = 0 and the three other ones are 
roots of the algebraic equation 

( A  - u,) {tp,  a( 1 - 3-a) ( Ug - A )  (U,  - A )  +%-a -+pe a( 1 - a )  ( U, - U,) ( U l -  A ) }  

- p { ~ - a ( U / - U g ) - ~ ( l - 3 ~ )  (Ug-A)}  = 0. 
(10. I )  

We write 

cf being the sound velocity defined in (9.1). With these, (10.1) becomes 

(10.2) 

(10.3) 

I n  practice 7 is a small quantity because cf, although very much smaller than the 
sound velocity in pure liquid, is of order lo2 m/s and the velocities of either gas or 
liquid are in most cases of the order of 1 m/s. If we write 

5 = 5 0 + r c l + r 2 c z + . - .  

and expand the left-hand side of (10.3) in ascending powers of 7, we obtain when we 
neglect terms of order y2 

l--a (G - 50) + d35;  el -( 1 +-) 1 -3-a G- (5, - 1 )I = 0. 

Solving for to and el, we find 

[ = O ,  with c =  1 ,  (10.4) 

l--a 
2( 1 - 3-a). 

5; = 1 ,  with el = (10.5) 

Using (10.2) and returning to  physical variables, we finally obtain for the roots of 
(10.1) 

from (10.4): A, = Ug+O i(ug,">. 10.6) 

10.7) 

in which cf and co are given by (9.1) and (9.2) respectively. 
First of all, we see that all As are real. Further, from general acoustic theory, we 

infer that A, and A, are associated with sound waves. I n  a single-phase fluid the 
characteristic speeds are U + c ,  U being the fluid velocity and c the sound velocity. 
I n  a quiescent bubbly suspension sound is propagated with speed cf. I n  a moving fluid 
where U, = Ug = Uo sound is convected with the flow, see (10.7) ,  as in a single-phase 
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fluid. However, when both phases move a t  different velocities, the characteristic 
speeds depend both on the velocities and on a (through the factor (cf/c,J2 in (10.7)). 

It is interesting to note that, because, from (9.1) and (9.2), 

(:)'+I as a + ~ ,  

we have &-f$(Ug+ U,)fcf as a+O. (10.8) 

This behaviour for a + O  of the characteristic velocities was also found by Prosperetti 
& van Wijngaarden (1976), who, however, used an erroneous equation for the relative 
velocity (see footnote on p. 314). Finally, the characteristic speed A, in (10.6) is 
associated with concentration waves. We have already emphasized that, because no 
interactions between the bubbles are taken into account, the kinematic wave velocity 
does not show a dependence on the void fraction. This dependence will only become 
apparent after inclusion of interaction effects. 

I n  the above analysis the characteristics have been evaluated for small 7. It can 
be shown that the roots of (10.3) are also real for arbitrary values of 7. 

11. Conclusion 
A system of equations (8.1)-(8.8) for bubbly flows has been obtained in which 

fluctuations are taken into account. The fluctuations are of purely hydrodynamic 
nature. The system (8.1)-(8.8) is consistent in two ways. First, all equations have been 
obtained by ensemble averaging over all possible realizations of a large number of 
bubbles in a given volume. Secondly, in the derivations it is assumed that the 
suspension is dilute and that the velocity fluctuation at a given point is due to  the 
motion of one bubble only. (The probability of a second bubble being at a distance 
of the order of the bubble radius is of the order of the concentration squared.) 

It appears that  the system (8.1)-(8.8) is completely hyperbolic. This is a remarkable 
result because equations that have been previously derived by others, along different 
lines, appear to have complex characteristics, making the solutions depend in a 
discontinuous way on the initial conditions. It is shown that two characteristics are 
associated with sound waves. One is zero (at  least in our approximation, in which 
in the momentum equations the density of the gas in the bubbles is neglected), and 
the remaining one is shown to be associated with concentration waves. In the present 
approximation of no interactions these travel with the gas velocity, which is precisely 
the characteristic root found in 8 10. 
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